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ANALYTICAL AND COMPUTATIONAL ASPECTSOF COLLABORATIVE
OPTIMIZATION

NATALIA M. ALEXANDROV* AND ROBERT MICHAEL LEWISt

Abstract. Bilevel problem formulations have received considerable attention as an approach to multi-

disciplinary optimization in engineering. We examine the analytical and computational properties of one

such approach, collaborative optimization. The resulting system-level optimization problems suffer from

inherent computational difficulties due to the bilevel nature of the method. Most notably, it is impossible

to characterize and hence identify solutions of the system-level problems because the standard first-order

conditions for solutions of constrained optimization problems do not hold. The analytical %atures of the

system-level problem make it difficult to apply conventional nonlinear programming algorithms. Simple

examples illustrate the analysis and the algorithmic consequences for optimization methods. We conclude

with additional observations on the practical implications of the analytical and computational properties of

collaborative optimization.

Key words. Bilevel optimization, collaborative optimization, constraint qualification, decomposition,

multidisciplinary design optimization, multilevel optimization, nonlinear programming, optimality conditions

1. Introduction. Multidisciplinary design optimization, or MDO, is concerned with systematic ap-

proaches to the design optimization of complex, coupled engineering systems, where _multidisciplinary"

refers to the different aspects that must be included in a design problem. The design process is extremely

complex because engineering systems are governed by the considerations of all the contributing disciplines.

The design of aerospace vehicles involves, for instance, aerodynamics, structural analysis, propulsion, and

control, among many other disciplines. For the purposes of this paper, we mean by MDO a subset of

the total design problem probably in the conceptual or preliminary phases that can be formulated as a

mathematical optimization problem (nonlinear program).

We examine here a class of bilevel approaches to MDO that has recently received attention under the

name of collaborative optimization (e.g., [11 13,23,28]). The fundamental idea also appeared previously

in [1, 6, 7, 25 27, 33, 37]. Collaborative optimization (CO) is an approach to MDO problems based on the

decomposition of the problem along the lines of the constituent disciplines. CO seeks to state and solve

MDO problems in a way that preserves the autonomy of the disciplinary calculations by eliminating from

the system-level problem all those design variables local to individual disciplinary subsystems.

CO is distinguished by its bilevel structure, where consistency among the disciplinary subsystems is

enforced via equality constraints in a system-level problem that coordinates the interdisciplinary coupling

while trying to improve the system-level performance objective. The values of these constraints are obtained

by solving distributed, lower-level optimization subproblems, whose objectives minimize the interdisciplinary

inconsistency, subject to satisfying the disciplinary design constraints. (An alternative bilevel approach,

developed in [31,32,34,35], maintains interdisciplinary consistency at the system level while seeking to

minimize the violation of the disciplinary design constraints at the subsystem level.)

Computational difficulties with the fundamental approach in CO were already observed in [36] and
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further confirmed in later numerical tests [2, 22]. This numerical evidence motivated the current study.

As we discuss, collaborative optimization possesses analytical features that lead to serious computational

difficulties when conventional nonlinear programming algorithms are applied to the solution of the resulting

system-level problem. In particular,

• CO leads to system-level optimization problems that necessarily fail to satisfy the standard Karush-

Kuhn-Tucker conditions, either because Lagrange multipliers do not exist, or because the constraint

Jacobian is discontinuous at solutions.

• CO formulations lead to system-level problems that are more nonlinear than the original problem.

These features make it very difficult for conventional optimization algorithms to solve the CO system-level

problems reliably or efficiently. We believe that these analytical properties of CO are the cause of the

numerical difficulties reported in [2, 22, 36].

The computational difficulties reported in connection with CO are an intrinsic property of the bilevel

approach used to enforce interdisciplinary consistency via system-level equality constraints, while attempting

to minimize the inconsistency via lower-level optimization problems. Because this bilevel approach is so

frequently encountered in the multidisciplinary optimization literature, a careful analysis is constructive in

clarifying some of the important practical computational issues that arise and which remain to be addressed.

One of the broader points of this paper is that problem formulation has profound, practical algorithmic

consequences. Reformulating a perfectly well-posed MDO problem may have pernicious effects on our ability

to solve the problem. The transformation to CO destroys the computational character of the original opti-

mization problem, and the resulting problem may be impossible to solve reliably with standard algorithms.

The difference in computational behavior of two formulations of the same problem shows that the study

of feasibility, optimality, and sensitivity to perturbations is a crucial component in comparing different ap-

proaches to formulating MDO problems, as is the study of the practical algorithmic consequences of choosing

a specific problem formulation. The general considerations of formulation equivalence are addressed in [4, 5].

We give mathematical statements of the analytical results, which we illustrate with a number of simple

examples. The analysis of CO given here is by no means exhaustive. We address only some of the analytical

and computational features of immediate import to optimization algorithms.

Section 2 describes the two-discipline model problem used to illustrate the properties of CO and its

standard formulation as an optimization problem. Section 3 introduces two variants of CO applied to the

model problem. Section 4 describes two simple examples used throughout the paper to illustrate the salient

characteristics of CO. Section 5 gives the motivation for CO in preparation for Section 6, which contains

the analysis of the important analytical features of CO, illustrated with computational examples. Section

7 discusses relaxation of CO designed in order to improve its numerical behavior. Section 8 concludes with

additional observations on the practical computational considerations arising in connection with collaborative

optimization.

2. A two-discipline model problem. For clarity, we present our discussion of CO for an MDO

problem with two disciplines: Discipline 1 and Discipline 2. For example, they might represent the aeroelastic

interaction between aerodynamics (Discipline 1) and structural analysis (Discipline 2) for a wing in steady-

state flow.

2.1. Problem components. The disciplinary subsystems are the building blocks of MDO problems.

We assume that each discipline is based on a disciplinary analysis depicted schematically as the input-output

relation in the following figure:



s, li,Pi
Disciplinary analysis i

ai

Each discipline takes as its input a set of design variables (s, li) and parameters Pi. Each discipline

produces a set of analysis outputs ai. We use ai to represent the totality of outputs from a given discipline,

including all data that are passed to the other discipline as parameters, but also, perhaps, quantities passed

to design constraints and objectives. The system-levd design variables s are those shared by both disciplines.

The disciplinary design variables 11 and 12 are local to Disciplines 1 and 2, respectively. Parameters Pi are

derived from the analysis outputs aj, j _ i, of the other discipline. They are not directly manipulated

by the designer in Discipline i. For instance, in our aeroelastic example, the input Pl from structures to

aerodynamics would include the wing shape, while the input P2 from aerodynamics to structures would

include the aerodynamic loads.

The disciplinary input-output relations have the functional form

ai = Ai(s, li,pi).

The disciplinary analyses A1 and A2 are assumed to be independently soluble. That is, for Discipline 1 we

assume that, given appropriate values of inputs (8,/1,Pl) to Discipline 1, we can compute the disciplinary

output al via the Discipline 1 analysis

a I = A1(s,11,P1 ).

(By "appropriate" we mean input values for which the analysis is defined.) Continuing with our aeroelastic

illustration, given values Pl for the shape of the wing, we can compute the flow a I around it. Likewise, given

appropriate values of inputs (s, 12,p2) to Discipline 2, we assume we can compute the disciplinary outputs

a2 as

a2 = A2(s, 12,p2).

In our example, given values of the aerodynamic loads P2, we can compute the structural response a2.

2.2. Multidisciplinary analysis. In the context of the MDO problem, the coupled multidisciplinary

analysis system (MDA) reflects the physical requirement that a solution simultaneously satisfy the two

disciplinary analyses. The input parameters Pi to each discipline are now required to correspond to some

(or all) of the outputs aj from the other disciplinary analysis. Schematically, we have

8, 11

, Disciplinary anal

s, 12
, Disciplinary analysis 2 '1 a_ )

L_L/



We write the consistent multidisciplinary analysis system as a simultaneous system of equations. Given

(s, 11,12), we }lave

(2.1) al = AI(S,/1, a2)

(2.2) a 2 : A2(8 , 12, al) ,

where solving the first equation results in the analysis outputs al of Discipline 1, and solving the second

equation produces the analysis outputs a2 of Discipline 2. The multidisciplinary analysis thus implicitly

defines al and a2 as functions of (s, 11,12):

al = al(S, ll,12), a2 = a2(s, ll,12).

Solving the coupled equations (2.1) (2.2) leads to a full multidisciplinary analysis, in which the coupled

disciplines give a physically consistent (and thus meaningful) result. The disciplinary responses ai describe

part of the behavior of the system. Again, if Discipline 1 represents aerodynamic analysis of the flow

around a wing and Discipline 2 represents structural analysis of the wing, al and a2 may represent the flow

field near the wing and the deformed shape of the wing due to structural response and aerodynamic loads,

respectively. The calculation of the flow field a I requires the shape of the wing, which is contained in a2,

while the calculation of the wing deformation a2 requires the aerodynamic loads, contained in a1.

2.3. A standard formulation of the two-dlsclpllne MDO problem. We now turn to coupling

the two disciplines in connection with a design optimization problem. Given the need to satisfy MDA at a

solution, the most natural optimization problem formulation, arguably, is to impose an optimizer over MDA.

In fact, this approach has been commonplace in engineering for many years. We will use this standard

formulation to represent the original problem, i.e., the problem one ideally wishes to solve. The flow of

information in this formulation is depicted as follows:

8, 11 . Disciplinary analysis 1

8, 12 ly__. Disciplinary anal

The mathematical statement of the standard MDO formulation is

minimize
s,ll,12

(2.3) subject to

f(8, aI (8, ll,/2), a2(8,ll,/2))

g1(8,11,a1(8,11,12)) 0
g2(s,12,a (s, 11, >_O,

minimize f(s, al, a2)
s,ll,12

subject to 91(s,11,a1) <_0

g2(s, 12,a2) _< 0

where, given (s, 11,12), we solve the multidisciplinary analysis system (2.1) (2.2) for the disciplinary analysis

outputs al(s, ll, 12) and a2(s, ll, 12). The function f represents the system-level objective.

To facilitate the introduction of CO, we have chosen a simplified model problem: each of the constraints

gi explicitly depends only a single discipline's analysis outputs. There is no constraint that involves al and



a2 jointly. Accordingly, the constraints 91,92 are disciplinary design constraints associated with Disciplines 1

and 2, respectively. This choice of design constraints simplifies the exposition, but is by no means essential.

The statement of the general problem, without this simplification, and its CO reformulations are given in

the Appendix.

3. Reformulation in terms of collaborative optimization. There are several variants of collabo-

rative optimization. We consider two specific instances in detail, with the aim of formalizing presentations

of collaborative optimization that have appeared most frequently in other sources.

To reformulate (2.3) along the lines of CO, we introduce new disciplinary design variables 0.1,0.2 that

relax the coupling between the subsystems through the shared system design variables s. The variables 0.i

serve as local copies (at the level of the disciplinary subproblems) of the shared variables s. In general,

Greek letters will denote new, auxiliary variables designed to serve at the subproblem level as copies of

shared quantities.

CO is a bilevel approach in which a system-level coordination problem attempts to optimize the system-

level objective resulting in the following system-level problem:

minimize f (s , t l , t2)

(3.1)
subject to C(s, tl,t=) = 0,

where there are N interdisciplinary consistency constraints C = {Cl,..., CN} which we describe presently.

The system-level problem controls the system-level design variables s and interdisciplinary coupling variables

(tl, t2), which, as we discuss, are system-level target values for the disciplinary inputs and outputs al and

a 2 .

The system-level problem issues design targets (s, tl, t2) to the constituent disciplines. In the lower-level

problems, the disciplines must design to match these targets, as follows. In Discipline 1, we are given (s, tl, t2)

and compute 0-1(8, tl, t2) and 11(s, tl, t2) as solutions of the following minimization problem in (0-1,11) at the

level of Discipline 1:

minimize
(3.2)

subject to

1 [110-1-- 8 II2+ IIa1(0-1,11,t2) tl II2]

gl(0-1,11,al(0-1,11,t2)) _ O,

where al is computed in this disciplinary optimization problem via the disciplinary analysis

al = A1(0-1,11,t2).

Note that in the disciplinary subproblem (3.2), the system-level variables (s, tl, t2) serve either as parameters

or targets that we try to match. An analogous problem for Discipline 2 defines solutions 0-2(s, t1,t2) and

12(s, tl, t2) of the problem

minimize
(3.3)

subject to

1 [110-2- * II2+ IIa2(0-2, 12,t1)- t2 II2]

g2(0-2, 12, a2(0-2, 12, tl)) _ 0.

Again, a2 is computed via the disciplinary analysis

a2 = A2(0-2, 12,tl).

The introduction of disciplinary minimization subproblems of the form (3.2) (3.3) is a distinctive char-

acteristic of CO. The subproblems can be solved autonomously. By solving the subproblems, we are using



thedisciplinarydesignconstraints9i to eliminate the disciplinary design variables li from the system-level

problem, and decoupling the calculation of the disciplinary analysis outputs ai. Information from the solu-

tions of the disciplinary problems (3.2) (3.3) is then used to define the system-level consistency constraints

ci. The type of system-level constraints used gives rise to a specific variant of CO.

The first variant of CO we discuss is the one in which CO is most frequently presented. For instance, see

[11, 13, 27, 28]. In this formulation, the consistency condition is to drive to zero the minimum value of the

target mismatch objective in subproblems (3.2) (3.3). At the system-level, the interdisciplinary consistency

constraints are simply the optimal values of the objectives in (3.2) (3.3). That is, the consistency constraints

C = (Cl, C2) are defined as

(3.4) C1(8,_1,_2) = _[[1 0-1(8,_1,_2)--8 [12@ II a1(0-1(8'_1'_2)

(3.5) C2(8,_1,_2)---- _ [1[ 0-2(8,_1, _2) --8 I[ 2 -_-II a2(0-2(8,_1,_2)

where the bars over o1,0"2,/1,/2 indicate that these values are the results of solving the disciplinary opti-

mization subproblems for the given value of the system-level variables. We call this version CO2, where the

subscript "2" refers to the fact that the ci are sums of squares.

An alternative to the system-level consistency conditions (3.4) (3.5), giving rise to the second instance

of CO we discuss, is to match the system-level variables directly with their subsystem counterparts computed

in subproblems (3.2) (3.3). The consistency constraints C = (el,..., c4) are

C1(8,_1,_2) = 0"1(8,_1,_2) -- 8

C2(8, tl,t2) : al(0"1(8, tl,t2),/1(8, tl,t2),t2) -- tl

c3(8,tl, t2) = 0"2(8,tl, t2) - 8

C4(8, tl,t2) : a2(0"2(8, tl,t2),12(8, tl,t2),tl) -- t2).

We denote this formulation CO1 to indicate that the quantities in the system-level constraints are not sums

of squares. Note that (Cl, c2) are associated with Discipline 1, while (c3, c4) are associated with Discipline 2.

In either approach, we will call a value of the system-level variables (s, tl, t2) realizable for Discipline i

if the optimal objective value in the corresponding disciplinary optimization problem (3.2) or (3.3) is zero.

Realizable values of the system-level variables correspond to desirable designs: if the optimal objective value

in the disciplinary optimization problem for Discipline i is zero, then this means that Discipline i can exactly

match the system-level input-output targets without violating the disciplinary design constraints. In general,

there will be many realizable values of the system-level variables for a given discipline. A point (s, tl, t2) is

feasible for the system-level problem when it is realizable for all the constituent disciplines.

4. Some simple examples. To illustrate the formalism of the preceding section, we reformulate two

simple optimization problems a linear program and a convex quadratic program along the lines of CO.

The examples will be used throughout the remainder of the paper to illustrate the features of CO under

consideration.

When complex problems are used as the only test of methodology, it is often difl:icult to distinguish the

performance features due to the intrinsic properties of the method from those due to the various aspects

of implementation. Using simple examples allows us to isolate the intrinsic properties of collaborative

optimization. Moreover, simple problems provide a "lower bound" on reliability and robustness of a solution

technique: while it is clear that MDO methods are not intended for solving very small and simple problems,

any practical optimization approach should be able to solve such problems reliably.



4.1. A linear program. Considerthefollowingoptimizationproblemin asinglevariables:

minimize f(s) = s
(4.1)

subject to 0< s< 1.

This, arguably, simplest optimization problem, will suffice to make a number of points about the properties

of CO.

This problem has only shared design variables. To see how such a problem might come about as an

MDO problem, imagine a bar of cross-sectional area A (which will be our design variable) and fixed length L,

subject to a longitudinal load F. Suppose we have two contending design constraints from the "disciplines"

of stress and weight. The first constraint is that the stress not exceed some allowable limit S: F/A <_ S. The

second is that the weight not exceed some allowable limit W: flLA <_ W, where fl is the density of the bar.

As our system performance objective, we wish to minimize the total cost, which we take to be proportional

to the volume of the bar: _LA, where tc is the cost per unit volume. This leads to the design problem

minimize uLA
A

subject to F/S <_ A

A < W/(pL).

An appropriate change of variables leads to (4.1).

To reformulate (4.1) along the lines of CO, we create two disciplines associated with each of the two

inequality constraints, as in the preceding discussion. We view the constraints s _> 0 and s _< 1 as two

contending disciplinary design constraints. Given a value of the system-level variable s, the subsystem-level

problems are then

1 1
minimize _ II °1 -- 8 II2 minimize _ II 0"2 - s II2

subject to 0"1 _> 0 subject to 0"2 _< 1.

The solutions of these subsystem-level problems, as functions of s, are

(4.3) 0-1(s)={ 0 ifs-<O { s if s_<l8 ifs>o 0-2(8)= 1 ifs>1.

The C02 reformulation is then

minimize s
8

(4.4) subject to C1(8 ) = 1 II o1(8) - 8 II2 -- 0

1c2(8)= _ II0-2(8)- 8 II2 = 0,

while the CO 1 reformulation is

minimize s
8

(4.5) subject to Cl(S) = 0-1(8) - s = 0

c2(8)= 0-2(8)- 8 = 0.

4.2. A convex quadratic program. Our second example has a convex quadratic objective and linear

constraints:

(4.6)

minimize 1 (a12(/1,/2) -}- 10 a2(11,/2))

subject to s + 11 < 1

-s + 12 <_ -2,



wherea = (al, a2) is the solution of

2al + a2 = 11

a1+2a2=12.

Since a = a(/1,12) is a linear function of (/1,/2), the objective is a quadratic function of (/1,12). Reformulating

this problem along the lines of CO, we obtain the system-level problem

We obtain C02 if (7 = (Cl, c2) with

minimize _(1112 ÷ 10 12)
8,tl,t2

subject to C(s, tl,t2) = O.

1 [11 0-1(8, t1,t2)--8 I12 ÷ II a1(0-1(8'_1'_2)'/1(8'_1'_2)'_2)- tl II 2 ]

1 Ill_2(8,_1,_2)-8ii2+ IIa2(0-2(8,tl,t2),/2(8,tl,t2),tl)- t2 II2]

and we obtain C01 if C = (Cl,...,c4) with

Cl(8, tl,t2) = 0-1(8, tl,t2) -- 8

C 2 (8, tl, t2) = al (0-1 (8, tl, t2) ,/1 (8, tl, t2) , t2) -- t 1

c3(8 ,tl,t2) = 0-2(8, t1,t2) -- 8

c4(8, t1,t2) = a2(0-2(s, t1,t2),12(s, t1,t2),t1) -- t2,

where, given values of the system-level variables (s, tl, t2), the constrained optimal values 0-1(8, tl, t2) and

/l(S, tl, t2) are computed by solving the following problem for Discipline 1:

1[ ]minimize _ ][ 0-1- 8 ][2 ÷ ][ a1(0-1,11,t2) - t1 I12
0.1,/1

subject to o1 ÷ 11 < 1,

where a I is the solution of the disciplinary analysis

2al +t2 =/1.

Similarly, for Discipline 2 we compute 0"2(8, tl, t2) and 12(s, tl, t2), given values of the system-level variables

(s, tl, t2), via the following problem:

minimize
o-2,12

subject to

1 [110"2- 8 II2÷ IIa2(0"2,/2,tl) t2 II2]

-0"2 + 12 _< -2,

where a2 is the solution of the disciplinary analysis

tl + 2a2 = 12.

The solutions of these disciplinary problems are

(4.7)

(4.8)

(4.9)

(4.10)

0"1(s,t1,t2) = 8÷1/5 min((-s-2tl-t2÷ 1),0)

/1(s,tl,t2) = 2t1÷t2÷4/5 min((-s-2tl-t2÷ 1),0)

0"2(s,t1,t2) =8÷1/5 max((-S÷tl÷2t2÷2),0)

/2(8,t1,t2) =tl ÷2t2--4/5 HlaX((--8÷t I ÷2t2÷_),0).



5. Motivation for collaborative optimization. A number of considerations motivate collaborative

optimization as an alternative to the fully integrated design problem formulated in (2.3). We review some

of the reasons given for CO; see [11, 12, 23, 27] for further details.

In the context of multidisciplinary design, CO is particularly motivated by considerations of both problem

synthesis and problem decomposition [11, 12]. The formulation (2.3) is based on the multidisciplinary analysis

(2.1) (2.2). However, an MDA capability is not usually developed together with the constituent disciplinary

analyses. CO attempts to use the latter while finessing the necessity of developing a separate MDA capability.

CO is thus viewed as potentially being a facilitator of problem synthesis, with attendant savings of human

effort, even if the resulting computational problem is more difficult to solve.

It is also argued that the decomposition and flow of information in CO mirror those present in engineering

organizations. In the bilevel approach of CO, there is a system-level coordination problem that attempts to

optimize the system-level objective. In the process of doing so, it issues design targets to the component

disciplines. In the lower-level problems, the disciplines must design to match these targets. This is one sense

in which CO can be viewed as respecting disciplinary autonomy.

CO is also motivated by the wish to keep the disciplinary designs feasible with respect to the cor-

responding disciplinary design constraints during optimization. This avoids problems with designs that

cause a breakdown of disciplinary analyses. However, because the overall design (i.e., the system-level

and disciplinary design variables) does not, in general, satisfy the system-level interdisciplinary consistency

constraints, stopping in the middle of optimization may yield a design that is not physically consistent.

Another motivation for CO is a concern about the number of design variables in the fully integrated

design problem (2.3) [27]. Fully integrated formulations lead to the presence of the complete set of local

disciplinary design variables li in the system-level problem (2.3). The bilevel structure of CO uses the

subsystem design constraints to eliminate from the system-level problem the design variables li local to the

individual disciplines. This means that the details of the subsystem design are, in a sense, hidden in the

system-level problem. Note that this elimination is done via the disciplinary optimization problems.

Finally, CO is based on the intuition that there should be little interaction among the local design

variables of different disciplines, which suggests that the system-level coordination problem could be solved

quickly and easily.

6. Delinquent features of CO. In this section we discuss and illustrate by simple examples the

most pronounced analytical features of the system-level and disciplinary optimization problems and their

computational consequences. We believe that the analysis explains many of the computational difficulties

reported in [2, 22, 36]. In the light of these analytical characteristics, we later re-examine the rationale for

collaborative optimization.

Our analysis focuses on difficulties that necessarily arise at points that are realizable for individual dis-

ciplines, and, more specifically, designs that satisfy the system-level consistency constraints, i.e., designs and

disciplinary inputs and outputs that correspond to a consistent multidisciplinary analysis. These difficulties

include:

1. The standard Karush-Kuhn-Tucker conditions for a solution do not hold for the CO2 system-level

problem. That is, Lagrange multipliers do not exist for the system-level equality constrained problem

that results in CO2.

2. The derivatives of the CO1 system-level constraints will be discontinuous at values of the system-

level variables that are realizable for a given discipline if the solution of the disciplinary optimization

problem is on the boundary of the disciplinary feasible region. Unfortunately, this means that, in



general,theJacobianofthesystem-levelconstraintsisdiscontinuousat solutionsofthesystem-level
optimizationproblem,andthestandardKarush-Kuhn-Tuckerconditionsfor asolutiondonothold
fortheCO1system-levelproblem.

3. Thesystem-leveloptimizationproblemsin COaremorenonlinearthanthefully integratedformu-
lationof §2.3.Forinstance,collaborativeoptimizationtransformslinearprogramsintononlinear
programs.

All of thesefeaturesmakeit harderfor conventionaloptimizationalgorithmsto solvethe optimization
problemsin CO,andwill alsodegradetheefficiencywithwhichtheseproblemswill besolved,if theycan
besolvedat all. That is, thenatureof thesystem-levelconsistencyconstraintsmakesit verydifficultor
impossiblefor aconventionaloptimizationalgorithmto finda solutionthat satisfiesthedesignconstraints
oftheoriginalproblem.Moreover,badthingshappenat goodpoints:aswediscuss,thedifficultiesariseat
valuesofthesystem-levelvariablesthat arerealizable.Thesecomputationaldifficultiesareanunavoidable
consequenceof thebilevelapproachthat COusesto eliminatethedisciplinarydesignvariablesfromthe
system-levelproblemandmanifestdisciplinaryautonomy.

Theproofsof themathematicalpropositionsaretechnicalandnot germaneto thediscussionin this
paper.Instead,weillustratetheeffectsviaexamples.Interestedreadersmayfind theproofsin [3].

6.1. Breakdownof the standardstationarity conditionsin CO2. Thesystem-levelproblemin
CO2failsto satisfythestandardKarush-Kuhn-Tuckerstationarityconditionsfor aconstrainedminimizer.
Aswediscuss,withrareexceptionsLagrangemultipliersdonotexistfortheequalityconstrainedsystem-level
problemthatarisesin CO2.

Thesimpleexampleof§4.1sufficesto illustratethebreakdownofthestationarityconditions.From(4.3)
and(4.4)weseethatthegradientsofthesystem-levelconsistencyconstraintsaregivenby

{ s if s_<0 Vc2(s)={ 0 if s<_lVCl(S)-- 0 if s_>0 s if s_> 1.

The minimizer of the system-level problem (4.4) is s, = 0, and

VCl(8,) = Vc2(8,) = 0.

These constraint gradients are linearly dependent and hence violate the standard constraint qualification

(see, e.g., [14, 17] for detailed discussions of constraint qualifications). The normal stationarity conditions

for (4.4) would require the existence of Lagrange multipliers _1, _2 such that

However, we have

(6.1)

Vf(s,) +/_1Vc1(8,) @/_2Vc2(8,) ---- O.

V f(s,) +/_1Vc1(8,) @/_2Vc2(8,) ---- V f(s,) = 1.

Thus the normal stationarity conditions cannot be satisfied at s,.

The breakdown of the standard Karush-Kuhn-Tucker conditions in the system-level problem that arises

in CO2 is a general feature of the CO2 approach. It is a consequence of the system-level constraint Jacobian

vanishing at all points that are feasible with respect to the system-level equality constraints. To understand

this, consider a generic equality constrained minimization problem:

minimize f ( x )
x

(6.2) subject to C(z) = O,
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where (7(x) = (C1(X),..., Crn (X)). The associated Karush-Kuhn-Tucker necessary condition for a point z, to

be a (local) minimizer of (6.2) is that C(z,) = 0 and that there exist Lagrange multipliers _, = (hi,..., _,_)

for which

(6.3) Vf(x,) + VC(x,)£, = O,

where VC(z) is the transpose of the Jacobian of C. However, as the following proposition illustrates, it is

entirely possible that the Karush-Kuhn-Tucker conditions do not hold at a solution.

PROPOSITION 6.1. Let x, be feasible for" (6".2), and suppose that VC(x,) = 0. Then the stationarity

eondition (6".3) holds if and only ifV f(x,) = O.

This follows immediately from (6.3): Vf(x,) + VC(x,)A, = Vf(x,), since VC(x,) = 0. Thus, if the

constraint Jacobian vanishes at x,, the Lagrange multiplier rule will not hold at x,, unless x, is also an

unconstrained stationary point: Vf(z,) = 0. In general, this is not the case.

Unfortunately, the situation described by Proposition 6.1 necessarily arises in the system-level problem

of CO2. The system-level constraints are differentiable at system-level feasible points; however, the Jacobian

is zero. More precisely, at values of the system-level variables that are realizable for a given discipline, the

gradient of the CO2 system-level constraints associated with that discipline vanishes.

PROPOSITION 6.2. Let ci(s, tl, t2) be the C02 system-level constraint associated with Discipline i. Then,

if ci(s, tl,t2) = O, we have Vci(s, tl,t2) = O.

Proposition 6.2 means that the Jacobian of the system-level constraints will drop rank whenever the

system-level variables become realizable for one or more of the disciplines. This can cause numerical opti-

mization applied to the system-level problem to fail at realizable values of the system-level variables. Another

consequence is the following.

COROLLARY 6.3. The Jacobian of the system-level equality constraints in C02 vanishes at every feasible

point of the system-level problem.

In view of this corollary, Proposition 6.1 says that Lagrange multipliers do not e:cist, in general, for the

system-level problem in CO2. While solutions to the system-level problem will exist, we cannot identify

them, and this inability to characterize solutions numerically via the Karush-Kuhn-Tucker conditions has

unfortunate consequences for computation. Assumptions about the validity of the stationarity conditions

underlie the ways in which optimization algorithms compute steps, gauge progress, and make decisions about

termination, among other things.

The nonexistence of Lagrange multipliers manifests itself in a number of practical difficulties. One curious

feature is that one could begin an optimization algorithm at or near the solution to the original system-level

problem, but, because the usual stationarity conditions for an optimizer do not hold, the algorithm will move

away from the solution, leaving the feasible region, and return to it only later.

A related feature is that algorithms that use augmented Lagrangians or similar merit functions to decide

whether to accept an iterate can break clown due to the fact that certain parameters, such as the penalty

weights in the problem merit function, are growing without bound. The divergence of these parameters is a

consequence of the fact that near the feasible region, the constraints are flat to first order while the objective

is not, in general.

Moreover, since the usual stationarity condition does not hold at solutions of the system-level optimiza-

tion problem, we have no way to gauge the progress of a conventional optimization algorithm applied to the

system-level problem. Once the optimization algorithm terminates, we cannot, say, look at the size of the

gradient of the Lagrangian to determine whether we are close to a minimizer.
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Although the nonexistence of Lagrange multipliers is an inherent feature of CO2, this difficulty is not

due to the intrinsic gcomctr'y of the system-level or disciplinary feasible regions. Rather, the problem lies in

the way the feasible region is r'cpr'cscntcd in terms of system-level constraints in CO2 the CO2 formulation

introduces this analytical problem. The vanishing of the Jacobian has been observed previously [11], but its

full consequences appear not to have been fully appreciated.

Simple numerical tests illustrate how this analytical feature of CO2 can impede and even thwart com-

putational optimization. Table 6.1 presents the behavior of a sequential quadratic programming algorithm

applied to the one-variable problem

minimize s
8

subject to 0<s< 1,

reformulated along the lines of CO2 as discussed in §4.1. These results were obtained using the NPSOL 1

optimization package [20] with analytic first-derivatives of the objective and constraints. The solution of the
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FIG. 6.1. Iteration history of NPSOL applied to

starting points, so = 0.001 and so = -0.001.
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the C02 system-level problem for a one-variable linear program with two

original problem is s, = 0. The initial guesses for the two tests are so = 0.001, which is close to the solution

s, and is also feasible with respect to the system-level constraints, and so = -0.001, which is also near the

solution but slightly infeasible.

When we start at so = 0.001, because the system-level equality constraints vanish in the interior of the

feasible region 0 _< s _< 1, the problem appears to be unconstrained at so and so we immediately take a

large step that produces Sl violating the design constraints. We then spend the remainder of the iterations

working our way back towards feasibility.

Note also the column labeled "Penalty". This is the value of the penalty weight in the augmented

Lagrangian used by NPSOL as a merit function by which to gauge progress. The fact that the penalty

1The use of names of commercial software in this paper is for accurate reporting and does not constitute an official

endorsement, either expressed or implied, of such products by the National Aeronautics and Space Administration or ICASE.

12



weight increases to such a large value reflects the fact that Lagrange multipliers do not exist for the system-

level CO2 problem; in effect, the algorithm is compensating for the system-level constraint Jacobian vanishing

by increasing the penalty parameter (in principle, without bound as it approaches the solution).

Finally, note the increased non-linearity introduced by the CO2 reformulation. The original problem is

a trivial linear program that NPSOL solves in a single iteration. However, the CO2 reformulation requires

many more iterations and much more work, as reflected in the column "Cumulative work/_ which is a

running tally of the number of evaluations of the system-level objective function. Each evaluation requires

the solution of the disciplinary optimization problems.

The behavior of NPSOL applied to the system-level problem that results from the CO2 formulation of

the convex quadratic program (4.6) is even more striking 2. The solution to the original problem is unique,

since the original problem is strictly convex. From some starting points, (e.g., (s, tl, t2) -- (1, 1, 1)) NPSOL

applied to the CO2 system-level problem finds the optimal solution:

s-- 18/11-- 1.6363, tl -- -10/33-- -0.3030, t2 -- -1/33-- -0.0303,

(6.4) _rl(S, tl,t2) = _r2(s, tl,t2) = s, ll(S, tl,t2) = -7/11, 12(S, tl,t2) = -4/11,

al(S, tl,t2) =tl, a2(s, tl,t2) =t2,

with the associated optimal value function of 5.05 × 10-2, although at a considerably greater computational

cost (several hundred disciplinary analyses) than that of the solution of the fully integrated formulation.

None of the iterates generated in the system-level problem are realizable for either discipline. In light of

Proposition 6.2, this non-realizability is actually the favorable situation from the perspective of applying

a numerical optimization algorithm to the CO system-level problem. However, this is at odds with what

would make most sense from an engineering perspective, since intermediate designs do not satisfy the physical

constraints.

On the other hand, the worst sort of behavior is observed starting from values of the system-level

variables that are feasible with respect to the system-level consistency constraints (which is at odds with

what one would hope for). For instance, if we start at (s, tl, t2) -- (-3,-3,-3), NPSOL terminates after a

few system-level iterations (and a cost of over 200 analyses for each discipline) at

(6.5) s=-2.806, t1=-5.658, t2=0.301

with the associated objective value of 16.46. This final value of the system-level variables (and all inter-

mediate iterates) satisfy the system-level equality constraints. Unfortunately, this is the adverse situation

in collaborative optimization, since the computed Jacobians at these point are singular, and this causes

NPSOL to fail. This singularity is reflected in the final estimate of -1.67 × 10 l° for the Lagrange multiplier

associated with the system-level constraint Cl.

Even if we begin much closer to the solution, but still feasible with respect to the system-level constraints,

we may fail to converge to the solution. For instance, starting from (s, tl, t2) = (1.63,-0.3333,-0.0333),

NPSOL applied to the system-level problem halts, unable to make further progress, at a feasible value of the

system-level variables with an objective of 6.10 × 10 -2, over 20% greater than the optimal value, and only

a slight improvement on an initial objective value of 6.11 × 10 -2.

As noted previously, because the usual constrained stationarity conditions do not hold at a solution

of the system-level problem in CO2, we cannot reliably use the conventional metrics to determine whether

2In the CO2 tests described, we compute system-level sensitivities via post-optimMity sensitivity analysis of solutions of

the disciplinary problems, as one might in practical application of COs, while the sensitivities used inside the disciplinary

subproblems are computed analytically.
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thesespuriousanswersarenearlystationaryandthuscloseto asolution.Forinstance,if westartwith the
system-levelvalues(s,tl, t2) = (1.63,-0.302,-0.302), we terminate at a point that appears to NPSOL to

be a Karush-Kuhn-Tucker point. That is, the point is feasible and the projection of the objective gradient

onto the linearization of the active constraints is small in magnitude. However, the Jacobian is nearly zero,

so small errors in computing the system-level sensitivities makes the Jacobian mostly noise. Thus, the

projection is bogus. While the original problem has a unique minimizer, we cannot not find it reliably in

the CO2 reformulation.

We stress that this is not the fault of NPSOL. Instead, it is a feature of the CO2 approach, which

formulates the system-level problem so that the Jacobian of the CO2 system-level constraints necessarily

vanishes at all feasible points (and will be singular at realizable points). For instance, in [36], the authors

applied both a feasible direction and a penalty function algorithm to a version of CO2. They also found

that the designs at which their algorithms terminated were highly variable and very sensitive to the choice

of parameters in the optimization algorithms.

These examples show that CO2 takes very simple, smooth, convex optimization problems with small

numbers of variables and transforms them into problems that are ditficult to solve. Moreover, the analytical

reasons for the computational ditficulties are inherent to the approach, so they will not disappear for problems

of greater size or complexity.

6.2. Breakdown of the standard stationarity conditions in CO1. The CO1 version of CO is

motivated by the need to alleviate the performance problems of CO2 [11]. However, the use of CO 1 presents

its own ditficulties. In this section, we discuss how it is almost always the case that the Jacobian of the

CO1 system-level constraints will be discontinuous at a solution. More precisely, the derivatives of the CO1

system-level consistency constraints associated with a given discipline are necessarily discontinuous at the

boundary of the feasible region for that discipline.

The examples in §4 manifest this problem. For instance, for the linear program (4.1), from (4.3), we see

that the system-level constraints are

-s ifs<0 { 0 ifs<l
C1(8 ) = 0"1(8 ) -- 8 = -- , C2(8 ) = 0"2(8) -- 8 = --

0 ifs_>0 1-s ifs_>l

both of which have discontinuous derivatives, the first at s = 0 and the second at s = 1. These points

correspond to the boundaries of the disciplinary feasible regions { s I s _> 0 } and { s I s _< 1 }. A similar

lack of differentiability can be seen in the CO reformulation of the quadratic program in §4.2. The solutions

of the disciplinary subproblems are given in (4.7) (4.10); the presence of the min and max terms makes these

solutions non-differentiable at values of the system-level variables along the boundary of the realizable sets

for each discipline.

This discontinuity of the system-level derivatives is a general feature of CO1 and is not peculiar to

the examples in §4. Each subsystem-level problem (3.2) (3.3) minimizes the distance from the disciplinary

feasible region to the target values of the system-level design and coupling variables. For target values of the

system-level variables corresponding to designs at the boundary of a disciplinary feasible region, the solution

of the corresponding disciplinary optimization problem undergoes an abrupt and non-differentiable change.

The following proposition gives a mathematical statement of this observation.

PROPOSITION 6.4. Let Ci(s, tl, t2) be the set of CO 1 system-levd consistency constraints associated with

Discipline i. Suppose (s, tl, t2) is realizable for" Discipline i, and Ci is defined on a neighborhood of (s, tl, t2).

If the solution cri(s, tl, t2) , //(8, tl, t2) is on the boundary of the disciplinary feasible region (i.e., one or" more
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of the disciplinary design constraints are binding), then the Jacobian of Ci is discontinuous at (s, tl, t2),

Moreover, this discontinuity of the derivatives will, in general, occur at the solution to the system-levd

problem. This is so because, in general, at least one disciplinary design constraint will be binding at the

solution. This means that we can expect the solution of the system-level problem to be on the boundary of

one (or more) of the feasible regions for the individual disciplines, and at such points the CO1 constraints

have discontinuous derivatives.

The convex quadratic program in §4.2 demonstrates the effects of the discontinuity of the system-

level consistency constraint Jacobian. NPSOL finds the solution of the original problem in 4 5 iterations,

regardless of the starting point. (For the purposes of comparison we treated the linear constraints as general

nonlinear constraints.)

NPSOL applied to the CO1 reformulation, on the other hand, behaves erratically. If we start from the

initial point (s, tl, t2) = (1.63,-0.302,-0.0302), which is close to the exact solution, (1.63,-0.30,-0.03),

NPSOL finds the solution at a cost of about 50 disciplinary optimization problems for each discipline.

On the other hand, if we start at the point (s, tl, t2) = (-1,-1,-1), NPSOL terminates, unable to make

further progress, at

s = -0.996872, tl = -1.463996, t2 = -0.06887874

crl(s, tl,t2) = cr2(s, tl,t2) = s, ll(S, tl,t2) = -1.601754, 12(s, tl,t2) = -2.996872,

al(s, tl,t2) =tl, a2(s, tl,t2) =t2.

This design satisfies the system-level constraints but has an associated objective value of 1.096 (the optimal

objective value is 5.05 × 10-2). The associated disciplinary design variables for Discipline 2 also lie on

the boundary of the disciplinary feasible region (since s +/2 = -2), so we encounter the discontinuity in

the constraint Jacobian described in Proposition 6.4. Examination of the finite-difference estimate of the

Jacobian computed by NPSOL at this point reveals that the Jacobian is highly inaccurate.

Starting from (s, tl, t2) = (0, 0, 0), NPSOL approaches but does not succeed in finding the correct answer

of the original problem. We terminated this run after 500 system-level iterations with an objective that was

2.7 times greater than the optimal value, at a cost of solving over 3000 disciplinary optimization problems

for each discipline.

Again, these ditficulties are not the fault of NPSOL. Collaborative optimization produces system-level

problems that defeat traditional smooth optimization algorithms. In this case, the Jacobian of the CO1

system-level constraints is discontinuous at realizable designs on the boundary of one or more disciplinary

feasible regions.

6.3. Additional sources of nonsmoothness. There are additional sources of nonsmoothness that

can arise in collaborative optimization. In particular, when the set of disciplinary design constraints that

are binding at the solution of the disciplinary optimization problems (3.2) (3.3) changes as a function of the

system-level targets (s, tl, t2), there may be a discontinuity in the derivative of the system-level constraints

for both CO1 and CO2. In connection with bilevel approaches, this ditficulty was previously noted in, e.g.,

[8 11], and is a well-known phenomenon that arises in studying the dependence of solutions of optimization

problems on parameters. The discontinuity of the constraint Jacobian discussed in §6.2 is one manifestation

of this phenomenon that necessarily arises in CO.

There is also the potential for multiple local solutions of the disciplinary subproblems (3.2) and (3.3).

The computed solutions may fail to depend continuously on the system-level targets (s, tl, t2). It is not clear

how to insure that one computes only a continuous branch of local minimizers to the subsystem problems.
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We do not illustrate these two difficulties with examples. They are widely known, and they may or may

not occur, depending on the particular problem and the algorithms applied to its solution. The characteristics

described in the previous sections, on the other hand, are intrinsic to CO and may occur even if the original

problem is perfectly well-behaved.

6.4. Overdetermined system-level constraints. In a typical, well-posed equality constrained mini-

mization problem, there are fewer equality constraints than optimization variables, i.e., the degrees of freedom

in searching for a problem solution outnumber the binding constraints. Both CO1 and CO2 can result in

system-level optimization problems that have more equality constraints than optimization variables, with

CO1 typically leading to more system-level equality constraints than does CO2. The simple one-variable

linear program illustrates this: the system-level problem has a single variable but two equality constraints.

While the system-level equality constraints are consistent insofar as they are satisfied at any multidisci-

plinary consistent design (s, tl, t2), away from the solution the overdetermined system-level constraints may

cause trouble for standard optimization algorithms. For instance, in an sequential quadratic programming

(SQP) approach, the system-level constraints are linearized. Since there may be many more constraints than

unknowns, the resulting linear system may appear to be overdetermined and without solution, leading to an

infeasible SQP subproblem. This, in turn, may lead the optimization algorithm to wrongly conclude that the

system-level problem is infeasible and to terminate without having found a solution. We have observed this

behavior in practice (although, to its credit, NPSOL generally does not fail because of the overdetermined

constraints.)

In CO2, one can try to avoid this problem by summing the constraints from different disciplines into a

single system-level nonlinear equality constraint. In CO1, this remedy does not apply.

6.5. System-level sensitivities. In collaborative optimization, the sensitivities of the system-level

consistency constraints involve sensitivities of the solutions of the subsystem-level optimization problems

(3.2) and (a a) Although, in general, collaborative optimization is intended for problems in which the

interdisciplinary coupling variables are significantly fewer in number than the local disciplinary variables,

so that the CO system-level problem has fewer variables than does a fully integrated formulation, the cost

of computing sensitivities for the system-level problem is still an issue due to the cost of the disciplinary

optimization problems that define the system-level constraints.

In general, at non-realizable points one can compute the CO2 system-level constraint sensitivities rel-

atively inexpensively via standard post-optimality sensitivity analysis of solutions of the disciplinary op-

timization problems (e.g., [15, 17]). On the other hand, analytical computation of the sensitivities of the

system-level problem in CO1 requires the second derivatives with respect to all the disciplinary design vari-

ables (_i, li) of the objective and constraints in the disciplinary problems (3.2) (a a) (see, eg, [15, 17]) This

makes analytical computation of the requisite system-level sensitivities impractical. Instead, one would need

to rely on finite-difference estimates of the system-level sensitivities. This, in turn, potentially limits the

applicability of CO1 to problems whose interdisciplinary coupling has a very limited bandwidth, as measured

in the number of system-level design variables s and system-level input-output variables (tl, t2).

6.6. Increased nonlinearity of the transformed problem. The simple examples of §4 show that

the system-level problem that one obtains in collaborative optimization will be more complicated and non-

linear than the original problem. For example, the original problem (4.1) is linear a linear objective with

linear constraints. However, the resulting CO subsystem problems in (4.2) are nonlinear. In the case of

CO2, the resulting system-level problem involves equality constraints that are piecewise quadratic, while in
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thecaseof CO1, the system-level problem has equality constraints that are not continuously differentiable.

The increased nonlinearity arises from the elimination of the local, disciplinary design variables via the

disciplinary optimization subproblems. CO transforms originally smooth problems into nonsmooth ones

with a higher degree of nonlinearity. As a general rule in nonlinear programming, it is important not to

increase nonlinearity or introduce other structural complications when transforming problems [19, 21]. For

instance, practical optimization algorithms are often based on successive linearizations. Linearization is

exact for linear problems, which allows algorithms to take advantage of this special structure. Collaborative

optimization reformulation does not preserve linearity in the system-level constraints.

6.7. Infeasibility of the disciplinary problems. The presentation of collaborative optimization in

§3 formalizes presentations that have appeared elsewhere (e.g., [11]). However, this problem statement does

not guarantee the feasibility of the disciplinary subproblems (3.2) and (33) For instance, the disciplinary

problem for Discipline 1,

minimize
O-1_I 1

subject to

1 [1101-- 8 II_+ IIa1(0"1,/1,t2)- tl II_]

([11(0"1,11,a1(0"1,11,t2)) > O,

may fail to be feasible for certain values of the system-level coupling variables t2. That is, given t2, there

may be 11o values of the local variables (0"1,11) for which 91(0"1,11, a1(0"1,11,t2)) >_ O. The possibility of

subproblem in feasibility was noted in [7] but no alternatives were proposed.

This problem can be addressed by introducing local copies rj of the coupling variables tj. We are led to

disciplinary subproblems of the following form. For Discipline 1, we have

minimize ½ []l 0.1 -- 8]12 + ]l r2- t2 ]l2 +]la1(0"1,11,r2))-t1 ]l2]
O-11/1 1T 2

subject to (J1(0"1, ll, a1(0"1, ll, 7-2)) > 0,

where al is computed in this disciplinary optimization problem via the disciplinary analysis

a I = A1(0"1,11, T2).

The variable r2 is a disciplinary stand-in for a2. An analogous problem for Discipline 2 defines solutions

0.2(s, tl,t2), 12(s, tl,t2), and 7-1(8, tl,t2) of the problem

minimize ½ [110"2- * II2+ II7-1-- _1 II2 + IIa2(0"2,12,7-1) -- _2 II2]
0-21/21T 1

subject to g2(0"2,12,_2(0"2,12,n)) > O.

Again, a2 is computed via the disciplinary analysis

a2 = A2(0"2, 12, rl).

Here the variable rl stands in for a 1.

Another advantage of this formulation is that it simplifies the calculation of the sensitivities of the

system-level constraints via post-optimality sensitivity analysis of the disciplinary subproblems. However,

this version of collaborative optimization still suffers from the analytical problems discussed previously.

7. Relaxation of system-level constraints. As we have seen, the bilevel nature of collaborative

optimization makes it difficult for numerical optimization algorithms to arrive at realizable, interdisciplinary

consistent designs. In order for a practical optimization algorithm to solve an MDO problem formulated in

17



terms of CO, one must be careful to stay away from physically consistent designs (i.e., realizable values of

the system-level variables).

One relaxation is to treat the system-level interdisciplinary consistency constraints as inequalities rather

than strict equalities (e.g., [22]). Tolerances on those inequalities should be as loose as possible to prevent

breakdown of numerical optimization algorithms. At the same time, one must continue to impose as tight a

tolerance as possible on the convergence of the disciplinary optimization subproblems, so that the system-

level constraints and their sensitivities are properly evaluated.

This approach has flaws. If the system-level equality constraints are not satisfied, the system-level

variables correspond to a design that is not physically consistent (because the multidisciplinary analysis

relations are not satisfied) and that also violates the design constraints of one or more disciplines.

Furthermore, this relaxation is not guaranteed to relieve the computational problems, or to lead to

designs that are "nearly" optimal. This is illustrated by the CO2 formulation of the convex quadratic

program (4.6). We relax the system-level constraints to be

C l(8,tl,t2) _ C

C2(8, tl,t2) _ g

for e > 0. From (4.7) (4.10), one can show that the relaxed system-level problem is a strictly convex

program, which accordingly has a unique minimizer.

First suppose we begin at (s, tl, t2) = (-3,-3,-3), which led to the false solution (6.5). The results for

different values of e are reported in Fig. 7.1. In all cases NPSOL fails to finds a legitimate solution for the

e Final KKT point for

10 -1

10-_

10-3

10-4

10-5

10-6

objective relaxed problem?

4.75 No

4.79 No

4.79 No

4.79 No

4.79 No

4.79 No

FIG. 7.1. Results of relaxing the COs constraints for the convex quadratic program example, starting at (-2,-2,-2).

relaxed system-level problem, even though the relaxed program is convex. Again, the algorithm is undone

by the singularity of the constraint Jacobian at feasible and realizable values of the system-level variables

(i.e., rows of the Jacobian vanish and/or become linearly dependent).

On the other hand, if we repeat the same experiment starting at (s, tl, t2) = (1, 1, 1), which allowed us

to find the correct solution (6.4), we encounter another pitfall. The results are summarized in Fig. 7.2. This

time, the relaxed constraints allow NPSOL to find objective values that are significantly better than the true

value 5.05 × 10 -2.

Whether such deviations are acceptable in a realistic problem depends on the application. If the objective

function is a physical value, such as range of an aircraft, the deviation may be significant. By relaxing the

system-level consistency tolerances, we are now sometimes able to solve the wrong problem more easily.

As this simple example makes clear, relaxing the system-level constraints does not necessarily fix CO2,

and may introduce another difficulty. It is not clear that there is an ideal relaxed tolerance for the system-

level constraints that allows one to solve the problem while not distorting the solution to unacceptable levels.
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10-1

10-_

10-3

10-4

10-5

10-6

Final KKT point for

objective relaxed problein?

1.62 x 10 -_° Yes

6.82 x 10 -3 Yes

3.23 x 10 -_ Yes

4.43 x 10 -_ Yes

4.85 x 10 -_ Yes

4.99 x 10 -_ Yes

FIG. 7.2. Results of relaxing the COs constraints for the convex quadratic program example, starting at (1,1, 1).

Furthermore, one would expect this sensitivity to relaxation to be greater in more complex problems. In

general, one cannot know, a priori, the effect of such relaxations on the optimal solution, since knowledge

would require a perturbation analysis at the optimal solution.

In our simple tests, we varied the tolerances parametrically. In practical engineering problems, users

may have a physics-based or an engineering-based idea of acceptable variations in the design variables,

objectives, or constraints. For example, variations of one pound may be acceptable in the gross lift-off

weight for an aircraft. However, in order to translate an acceptable variation in a physical quantity to

an acceptable tolerance for infeasibility of the system-level constraints, one would need an estimate of the

associated Lagrange multipliers at an optimal solution, which is not available a priori. Of course, we knew

exact solutions to our simple example problems and were thus able to judge the distance of any iterate from

the solution. Estimates of distance from solutions are unavailable in practice.

Response surface methodology (RSM) has been proposed as another approach to relaxing CO [24, 29, 30].

In one technique, the disciplinary analyses serve to build response surfaces that replace the analyses as

function evaluators in the subproblems. This is a conventional use of RSM and it does not alleviate the

analytical difficulties of CO: the optimization problem structure remains unchanged (although the additional

uncertainty of the quality of RSM approximation now contributes to the formulation).

The second approach uses RSM to build response surfaces that attempt to approximate the constrained

optimal value functions of the disciplinary subproblems. A detailed analysis of this approach would depend

both on the problem and on the specific type of data fitting surfaces used. As we are dealing with the

fundamental CO formulation in this paper, such an analysis is not in its scope. However, the conceptual

difficulty of the approach can be summarized as follows. Although response surfaces do smooth out the

problem and ease the solution by virtue of distancing the problem from the original CO formulation, it then

becomes difficult to say what problem we are actually solving. On the other hand, the better the response

surfaces approximate the problem, the more difficult it becomes to solve it, as the numerical properties of

the approximation begin to approach those of the real problem.

Approximation techniques are usually applied to well-posed problems to help reduce the computational

expense. Although computational cost is a concern in CO, the use of response surfaces in connection with

collaborative optimization is mainly aimed at avoiding difficulties with CO, not difficulties with the MDO

problem itself. Thus, it may not make sense to employ approximation techniques to alleviate intrinsic

structural flaws of a formulation.

8. Lessons learned. We have shown that CO formulations give rise to nonlinear programming prob-

lems that are difficult or impossible to solve by conventional optimization algorithms. The difficulty is due

not to intrinsic properties of the original MDO problem, but rather to the bilevel representation in CO.
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As simple examples show, if a CO formulation can be solved at all, it is unlikely that it will be solved

quickly. Thus, computational efficiency is not one of the method's attributes, in general. Depending on the

application, the lack of efficiency may be a deciding factor in selecting a problem formulation. Requirements

for inclusion of expensive, high-fidelity analyses may preclude the use of CO in a practical environment

[18]. Even if computational efficiency were not an important consideration, one should still examine other

characteristics when deciding on a formulation. With the analysis of the preceding sections in mind, we

comment on some of the remaining rationale for CO and on additional considerations that should assist a

user in choosing a problem formulation appropriate for a particular application.

8.1. Robustness. The concept of robustness in nonlinear programming has two major components.

First, it denotes the ability of an algorithm to find an answer, starting from an arbitrary initial point. Sec-

ond, a robust algorithm assures that the answer found is correct and, if not, terminates with an informative

message. The second feature is, arguably, by far the more important of the two. Since algorithms oper-

ate on the optimization problems that ultimately result from formulations of MDO problems, robustness

is closely related to non-degeneracy of a formulation [16]. CO formulations are not well-posed from the

perspective of conventional nonlinear programming because the system-level problems do not satisfy the

standard optimality conditions.

An algorithm applied to the system-level problem in collaborative optimization cannot be expected to

exhibit robust behavior. An algorithm's inability to find solutions is less serious than its inability to recognize

one. Our analytical results and computational examples show that CO, when started at or near solutions,

will generally leave the region. The lack of a verifiable stopping criterion for CO also explains the tendency

of NLP software to halt at points that are not solutions, because progress cannot be made. To provide a

reliable stopping criterion in terms of the standard problem formulation (2.3) one would have to implement

the standard formulation, which would defeat the purpose of implementing collaborative optimization in the

first place. This same reasoning also prevents uses of a hybrid approach, e.g., collaborative optimization

combined with the fully integrated formulation (2.3).

We have also shown that attempts to relax the CO formulation may not alleviate the computational

difficulties. Relaxation may not make it possible to find the solution reliably, and can also lead to an-

swers that appear significantly better than the correct solution but violate the physical consistency of the

multidisciplinary analysis and violate disciplinary constraints.

Design improvement, not optimality, may guide a user in the course of optimization, especially because

problem expense and complexity frequently dictate that only a limited number of iterations can be per-

formed. This approach leads to its own difficulties, because in constrained optimization progress is measured

algorithmically via merit functions that balance optimality and feasibility. Thus, at any intermediate iter-

ation of solving the system-level problem, unless a conventional convergence criterion is met, improvement

in the merit function does not guarantee an overall improvement in the design objective or a nearly optimal

design.

These features add up to what we consider to be the most serious drawback of CO the lack of robustness

in using nonlinear programming algorithms to solve the CO formulations. Again, this is due to the nature

of the system-level problem in CO, not to the nature of the original physical problem, nor to deficiencies of

standard optimization algorithms.

8.2. Disciplinary autonomy. The autonomy of disciplinary optimization is one of the strongest moti-

vational factors for CO. Indeed, collaborative optimization achieves a marked degree of disciplinary autonomy,

and the elimination of the local disciplinary design variables from the system-level optimization problem is
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an attractive feature of CO.

The disciplinary subproblems are not performing disciplinary optimization in the single-discipline sense.

That is, the subproblem objective functions are not disciplinary objectives, such as lift, drag, or weight.

Instead, the disciplinary objectives serve to minimize the inconsistency among the disciplinary analyses or,

in other words, they arrive at the MDA in a distributed manner.

Collaborative optimization is appealing because the system-level optimizer or coordinator provides the

disciplinary problems with targets for the shared variables and disciplinary outputs, while allowing each

disciplinary optimization problem to manipulate its set of local design variables. In fact, if the targets were

provided to the disciplines once and for all, complete autonomy would be attained. However, the system-level

optimization is an iterative process and so the disciplinary subproblems continue to receive new targets, thus

possibly necessitating human intervention when new outputs to the subsystems arrive with each system-level

iteration.

8.3. Dimensionality of the system-level optimization problem. Because the disciplinary sub-

problems eliminate the local design variables from the system, both the system-level optimizer and the

disciplinary optimization subproblems have a reduced number of variables, compared to the total set of

design variables. However, this reduction is achieved at the price of system-level problems that are difficult

or impossible to solve.

8.4. Ease of implementation and execution. When a problem formulation requires a multidisci-

plinary analysis capability, the effort is expended not just in implementing the MDA, but also during the

execution of MDA, because the processing of the disciplinary inputs may require extensive human interven-

tion. CO is claimed to ease problem implementation and execution because an explicit multidisciplinary

analysis capability is not required. We believe this claim has not been proven satisfactorily as yet, as we

now discuss.

On the positive side, local disciplinary variables need not be treated as optimization variables at the

system level. On the other hand, although MDA is not implemented in CO, the flow of information among

the disciplines still remains. That is, in our example of aero-structural interaction, structures still require

input from aerodynamics, and conversely. This data exchange occupies a large portion of the implementation

effort (regardless of the problem formulation) and adds to the execution effort. Because, typically, C02 would

require many iterations to attain some level of convergence, human intervention to handle interdisciplinary

inputs may be significant.

Moreover, because of the delinquent nature of the system-level problem in collaborative optimization,

much time may be expended on fine-tuning both the problem formulation and the optimization algorithm

in order to produce answers. And, as we have shown, these answers cannot be verified as being optimal or

nearly optimal.

For small test problems, we have found that implementing CO was more laborious than implementing the

standard method. This is precisely the case where small problems may not provide a fair test of the necessary

implementation effort. We could not locate more than anecdotal information on the implementation effort in

other publications on CO. This points to the need for careful measurement of labor expended on various parts

of the problem implementation in MDO: the modeling, the problem statement, the optimization. Moreover,

careful comparison must be made with the corresponding time expenditures when using, say, the standard

formulation. Until such accounting is done on a realistic problem, substantiating claims on the increased

ease of implementation will be difficult.
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9. Concluding remarks. Bilevel approaches suggest themselves naturally as a decomposition strategy

for large problems, and researchers have repeatedly turned to bilevel formulations in an attempt to deal with

engineering systems in a decentralized fashion. While computational efficiency is one of the goals of bilevel

approaches to the optimization of complex, coupled systems, the computational inefficiency that often results

in practice is viewed, first, as a feature that will be ameliorated by increases in available computing power

and, second, as less significant than the conjectured benefits of bilevel approaches, such as the ease of

problem synthesis and implementation, disciplinary autonomy, or a problem decomposition that reflects

certain organizational procedures.

The attempt to preserve disciplinary autonomy and reduce system-level complexity gives bilevel methods

their intuitive appeal. However, to evaluate an approach to MDO, one must answer a number of questions

concerning the resulting optimization problem(s). For methods based on decomposition and disciplinary

autonomy, what manner of autonomy is actually afforded? What are the analytical and computational

advantages and disadvantages attendant upon disciplinary autonomy? Do the benefits that motivate the use

of disciplinary autonomy, such as ease of implementation or computational efficiency, actually obtain in the

resulting approach?

In this work, we have examined in detail the analytical and computational features of a frequently

proposed bilevel approach to MDO. The analytical features have a practical impact on the ability of nonlinear

programming algorithms to solve the optimization problems that result from this approach. The study has

illustrated the distinction between the intrinsic geometry of the feasible set and the way in which that set

is represented in terms of constraints. P_eformulated problems can introduce analytical features that cause

difficulties for optimization algorithms [19, 21].

To illustrate the computational consequences of the analytical features of CO, we have conducted nu-

merous tests on convex problems chosen for their simplicity in order to remove intrinsic difficulties of the test

problems from the experiments. This means that the computational conditions of the tests were more benign

than what can be realistically expected in practice. We also used analytical derivatives in the disciplinary

subproblems and either highly accurate or analytical system-level sensitivities obtained from post-optimality

sensitivity analysis of the disciplinary solutions. The numerical tests substantiated the analysis by revealing

the following tendencies. Occasionally, a felicitous combination of optimization parameters and starting

point would enable us to solve the CO system-level problem, although at considerably greater cost than the

fully integrated approach. However, the solution could not be accomplished reliably. We observed that the

solution was most reliably achieved when all the system-level iterates were strictly non-realizable (i.e., not

realizable for all disciplines). This is a computational manifestation of the bad behavior of the system-level

Jacobian at realizable values of the system-level variables (e.g., Propositions 6.2 and 6.4).

In this work, we have relied on SQP algorithms as the means of solving the CO system-level problem

because SQP methods are generally the most efficient for equality constrained optimization. As we have

shown, CO has analytical features that hinder the successful operation of SQP algorithms. Singularity of

the system-level constraint Jacobian in CO2 means that solutions of the CO system-level problem do not

satisfy the standard Karush-Kuhn-Tucker optimality conditions, which leads to bogus estimates of Lagrange

multipliers and penalty parameters. Moreover, an SQP method relies on projections into the nullspace of

the constraint Jacobian. The Jacobian of the system-level constraints associated with a given discipline

consists of the derivatives of the optimal value functions for disciplinary subproblems as functions of the

system-level variables. Because the derivatives vanish at points realizable for that discipline, the Jacobian

computation suffers from large numerical errors at or near realizable (and hence feasible) points. This
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makes projection into the nullspace of the system-level constraint aacobians untenable and causes erratic

computational behavior. Results for other classes of optimization algorithms applied to CO-like methods

can be found in [36].

In summary, two characteristics of CO stand out. On the one hand, the approach does afford the user

increased disciplinary autonomy. On the other, CO system-level problems are neither efficiently nor robustly

solvable using conventional nonlinear programming algorithms. There is particular trouble at the points

of interest, i.e., at or near realizable or interdisciplinary feasible points. While one can devise algorithmic

approaches that avoid these points, one still must be sure that the ultimate solution is realizable, and hence

physically meaningful, for all disciplines. In selecting a problem formulation, the user must weigh the relative

importance of these features for the practical solution of the application problem in question.
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Appendix. To ease exposition in the main body of the paper, we considered an optimization problem

in which only the disciplinary constraints were present. Here we present a complete problem notation for the

case where no such assumption is made, because some problems demand the inclusion of system-level design

constraints that are functions of outputs from both (or several) disciplines (see, e.g., [2]). We incorporate

the alteration in Section 6.7 that insures that the disciplinary problems will always be feasible with respect

to the disciplinary design constraints. The analysis presented in the paper applies to this general problem

as well.

We thus consider the standard problem formulation

(9.1)

minimize

subject to

f(8, a1(8,t1,t2),a2(8, t1,t2))

go(8,a1(8,t1,t2),a2(8, t1,t2)) _ 0
gl(S, ll,al(S, tl,t2)) > 0
g2(s,12,a2(s,tl,t2)) >_O,

where, given the shared and local design variables (s, 11,12), the analysis outputs al, a2 are the solution of

the MDA system (2.1) (2.2).

Reformulating (9.1) along the lines of CO, now requires the introduction of the third set of system-level

constraints and a "Discipline 0" subproblem that represents the system-level design constraint. Consistency

constraints that represent Disciplines 1 and 2 and the corresponding subproblems remain unchanged.

Optimization of "Discipline 0" treats the system-level design constraints to obtain _r0(s, tl, t2), Cl(S, tl, t2),

and G(s, tl,t2):

minimize
(9.2) _0,_1,_

subject to

1 [11_0- s II2 + II_1 _1II2+ IIG '2 II2]

g0(O'0, _1, _2) _ 0.

Then for CO2, the additional system-level consistency constraint is

1 [1100(8,t1,t2)- 8 II2 + II_1(8't1't2) tl II2C0(8'_1'_2) = 5 -- + II_2(8'_1'_2)- _2112],
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while for CO1, the additional system-level consistency constraints are

C (8,tl,t2) ---- 0(8, tl,t2) --8
Cg(8,tl,t2) ---- l(8, tl,t2) --t 1
4(S, tl,t2) tl,t )
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optimization methods. We conclude with additional observations on the practical implications of the analytical and
computational properties of collaborative optimization.
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